1. 高斯低通滤波

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
#include<iostream>
#include<opencv2/opencv.hpp>
#include"mydft.h"
#include"Salt.h"

using namespace std;
using namespace cv;

int main(){
Mat img,img_gray,img_out,img_transform;
img = imread("/home/v/home.png");
if(img.empty()){
cout<<"can't open the image"<<endl;
return -1;
}

imshow("img",img);
cvtColor(img,img_gray,COLOR_BGR2GRAY);
imshow("img_gray",img_gray);
Salt(img_gray,1000);
imshow("img_gray_salt",img_gray);

//1. 傅里叶变换,img_out为可显示频谱图,img_transform为傅里叶变换的复数结果
mydft(img_gray,img_out,img_transform);
imshow("img_out",img_out);

//2. 高斯低通滤波
Mat planes[] = {Mat_<float>(img_out.size()),Mat::zeros(img_out.size(),CV_32F)};
split(img_transform,planes); // 分离通道,获取实部和虚部
Mat img_transform_real = planes[0];
Mat img_transform_imag = planes[1];

int core_x = img_transform_real.rows/2; // 频谱中心坐标
int core_y = img_transform_real.cols/2;
int r = 60; // 滤波半径
float h;

for (int i = 0; i < img_transform_real.rows; i++){
for (int j = 0; j < img_transform_real.cols; j++){
h = exp(-((i-core_x)*(i-core_x)+(j-core_y)*(j-core_y)/(2*r*r)));
img_transform_real.at<float>(i,j) *= h;
img_transform_imag.at<float>(i,j) *= h;
}
}

planes[0] = img_transform_real;
planes[1] = img_transform_imag;
Mat img_transform_ilpd; // 定义高斯低通滤波结果
merge(planes,2,img_transform_ilpd);

//3. 傅里叶变换
Mat iDft[] = {Mat_<float>(img_out),Mat::zeros(img_out.size(),CV_32F)};
idft(img_transform_ilpd,img_transform_ilpd); // 傅里叶变换
split(img_transform_ilpd,iDft); // 分离通道,主要获取0通道
magnitude(iDft[0],iDft[1],iDft[0]); // 计算复数的幅值,保存在iDft[0]
normalize(iDft[0],iDft[0],0,1,NORM_MINMAX); // 归一化处理
imshow("idft",iDft[0]); // 显示逆变换图像

waitKey(0);
return 0;
}